Research
Our brains utilize noisy, fluctuating sensory signals from the surrounding environment to guide valuable behaviors such as finding food or avoiding danger. Precise coding of relevant information in spatial and temporal patterns of neural activity is a key element of this function, with efficient coding adapted to both the statistical structure of sensory input as well as the changing behavioral demands of a given situation. This coding is achieved through complex circuits of synaptic interactions between populations of neurons and occurs as an animal explores and actively samples its environment. A mechanistic understanding of neural coding during active sensing and behavior is an important step towards the development of targeted therapeutics for psychiatric and neurodegenerative disorders.
We seek to define the neural circuit operations that support complex and flexible behavioral responses to natural sensory stimuli. We connect neural activity to behavior by employing a variety of techniques including electrophysiology, calcium imaging, optogenetics, and automated behavioral analysis.
Education
- February 10, 2022 David Gire has been promoted to Associate Professor and awarded tenure
- September 14, 2021 Mohammad Tariq received a two-year, NRSA Training award from the NIH, National Institute on Deafness and Other Communication Disorders.
- August 25, 2020 See this UW News video interview with David Gire on the kraken and the octopus
- July 30, 2020 David Gire just received an award from the National Institute of Health
- March 13, 2020 David Gire talks about the many brains of the octopus, in this story from The Daily. Dominic Sivitli is also quoted.
- February 21, 2020 Congratulations to David Gire, who just received an award from NIH!
- December 19, 2019 Dominic Sivitilli is featured in this Seattle Met Article "The Octopus from Outer Space"
- November 1, 2019 The work of Dominic Sivitilli and David Gire on octopus intelligence is featured in a recent UW Daily article.
- August 1, 2019 Work by Dominic Sivitilli in the David Gire Lab is the focus of an article on the NOVA website:
- February 25, 2019 David Gire's research on octopus intelligence was featured in the "Science Friday" posts of the Washington SeaGrant's facebook page.
- December 5, 2017 David Gire weighs in on the champagne flute in this Wine Enthusiast article.
- October 21, 2017 Congratulations to David Gire, who has received a Thomas Jefferson Fund Award from the French American Cultural Exchange for his work on olfactory navigation using naturally fluctuating odor cues.
- July 27, 2017 David Gire and his collaborator receive a research award from the French Embassy and FACE Foundation.
- May 1, 2017 Congratulations to Dr. David Gire, and his collaborator in the Biology Department, Dr. Bing Brunton, for receiving the 2017 UW Innovation Award!
- Algorithms for Olfactory Search across Species. Baker KL, Dickinson M, Findley TM, Gire DH, Louis M, Suver MP, Verhagen JV, Nagel KI, Smear MC. Journal of Neuroscience 2018 Oct 31;38(44):9383-9389.
- Mice Develop Efficient Strategies for Foraging and Navigation Using Complex Natural Stimuli. Gire DH, Kapoor V, Arrighi-Allisan A, Seminara A, Murthy VN. Current Biology May 23;26(10):1261-73.
- ϒ Spike-Field Coherence in a Population of Olfactory Bulb Neurons Differentiates between Odors Irrespective of Associated Outcome.Li A, Gire DH, Restrepo DJournal of Neuroscience 35 (14), 5808-5822
- Precise detection of direct glomerular input duration by the olfactory bulb. Li A, Gire DH, Bozza T, Restrepo D. Journal of Neuroscience 2014 Nov 26;34(48):16058-64.
- Information for decision-making and stimulus identification is multiplexed in sensory cortex. Gire DH, Whitesell JD, Doucette W, Restrepo D. Nature Neuroscience 2013 Aug;16(8):991-3.
- Temporal processing in the olfactory system: can we see a smell? Gire DH, Restrepo D, Sejnowski TJ, Greer C, De Carlos JA, Lopez-Mascaraque L. Neuron 2013 May 8;78(3):416-32.
- Functional properties of cortical feedback projections to the olfactory bulb. Markopoulos F, Rokni D, Gire DH, Murthy VN. Neuron 2012 Dec 20;76(6):1175-88.
- Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path. Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, Hen R, Schoppa NE. Journal of Neuroscience 2012 Feb 29;32(9):2964-75.
- Associative cortex features in the first olfactory brain relay station. Doucette W, Gire DH, Whitesell J, Carmean V, Lucero MT, Restrepo D. Neuron 2011 Mar 24;69(6):1176-87.
- Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb. Pandipati S, Gire DH, Schoppa NE. Journal of Neurophysiology. 2010 Aug;104(2):665-74.
- Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. Gire DH, Schoppa NE. Journal of Neuroscience 2009 Oct 28;29(43):13454-64.
- Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb.Gire DH, Schoppa NE. Journal of Neurophysiology 2008 Apr;99(4):2021-5.